Length-dependent helical propensities w(Ala)(n,T) at T = 10, 25, and 60 degrees C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLys(m)Inp2(t)Leu-Ala(n)(t)LeuInp2Lys(m)NH2, n = 15, 19, and 25, m = 5, in water. Van't Hoff analysis of w(Ala)(n,T) show that alpha-helix formation is primarily enthalpy-driven. For series 2 peptides Ac-Trp Lys5Inp2(t)Leu-(beta)AspHel-Ala(n)-beta-(t)LeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Ala(n) cores, protection factor-derived fractional helicities FH are assigned in the range 10-30 degrees C in water and used to calibrate temperature-dependent CD ellipticities [theta](lambda,H,n,T). These are applied to CD data for series 1 peptides, 12 < or = n < or = 45, to confirm the w(Ala)(n,T) assignments at T = 25 and 60 degrees C. The [theta](lambda,H,n,T) are temperature dependent within the wavelength region, 222 +/- 12 nm, and yield a temperature correction for calculation of FH from experimental values of [theta](222,n,T,Exp).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560101 | PMC |
http://dx.doi.org/10.1021/ja060094y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!