Determination of the protonation state of titratable protein residues is of critical importance for the interpretation of active site chemistry, as well as for understanding the role of electrostatic interactions in protein folding and stability. However, protein titration studies are limited by the fact that, at extreme pH values, increasing fractions of unfolded or partially unfolded structures may be present. This problem is particularly acute for lysine residues which have high pK values. In the present study, we point out that the use of the 13C resonance of lysine C-5 as a reporter for titration of the epsilon-amino group is preferable to the use of C-6 due to the 5-fold greater titration shift, so that reasonable results can be obtained using a two parameter fit of data obtained over a more limited pH range. A new synthetic procedure for [5-13C]lysine is described, and the pK value for Lys72 in the lyase domain of DNA polymerase beta has been determined using the [5-13C]lysine-labeled enzyme. The results agree well with recent studies of the Pol lambda lyase domain, demonstrating that the pK value for this residue is not optimized for Schiff base chemistry (Gao et al., Biochemistry 2006, 45, 1785-1794). We also have re-evaluated data for the pK of Lys73 in the TEM-1 beta-lactamase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846763 | PMC |
http://dx.doi.org/10.1021/ja061473u | DOI Listing |
Cells
December 2024
Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors.
View Article and Find Full Text PDFPlant Genome
March 2025
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Consisting of more than 11,000 members distributed over five families, the tautomerase superfamily (TSF) is a large collection of proteins with diverse biological functions. While much attention has been given to individual TSF enzymes, a majority remain structurally and functionally uncharacterized. Given its large size, studying a representative member of each family offers a viable approach for extracting mechanistic insights applicable to the entire superfamily.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!