The aim of this study was to find sources of Listeria monocytogenes contamination in fish products from a fish farm. The occurrence of L. monocytogenes also was compared in two freshwater fish farms with different types of fishponds. Samples collected from chilled rainbow trout (Oncorhynchus mykiss) and the slaughterhouse environment did not contain L. monocytogenes, but Listeria innocua was found in two samples from the slaughterhouses. Ten isolates of L. monocytogenes were discovered in sediment and water samples from farming tanks and earth ponds. Further characterization by serovar revealed the same serovar (1/2a) for all the isolates. Pulsed-field gel electrophoresis was used to divide the isolates into five different pulsotypes, three of which have been identified previously in fish products on the retail market. This finding supports the assumption that the primary production, and probably the raw fish, is a source of Listeria contamination in fish products. Some of the isolates were associated with a certain type of fishpond, indicating the need for hygienic analysis of the suitability of different types of farming ponds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-69.6.1443 | DOI Listing |
Curr Res Food Sci
December 2024
Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.
View Article and Find Full Text PDFFollowing a request from the European Commission, the European Food Safety Authority was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of canthaxanthin, regarding the addition of a new production route, by the yeast CBS 146148. The additive is already authorised as sensory feed additive for use in feed for chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying, ornamental fish, ornamental birds and ornamental breeder hens. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concludes that canthaxanthin produced with CBS 146148 is considered safe for the target species, the consumer and the environment under the current authorised conditions of use.
View Article and Find Full Text PDFAquac Nutr
January 2025
Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.
View Article and Find Full Text PDFFront Antibiot
October 2024
Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil.
Introduction: The intensification of tilapia production has increased animal density in tanks, leading to more frequent exposure to pathogenic agents and compromising the quality of fish products. Antimicrobial resistance is a global concern that affects human treatment, and sentinel microorganisms like are crucial for monitoring production chains, especially in aquaculture, where research is still limited. The aim of this study was to identify the presence of and investigate its antimicrobial resistance profiles throughout the entire tilapia production chain.
View Article and Find Full Text PDFFood Funct
January 2025
Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain.
An digestion model was established to characterize the types of collagens in skin of cod, white fish, and salmon as well as their collagen-containing skin-derived protein hydrolysates (CSPH) before and after digestion. Moreover, the mineral content and their bioaccessibility were evaluated. Finally, the presence of heavy metals was evaluated to assess the safety of these products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!