Risk studies have identified cross-contamination during beef fabrication as a knowledge gap, particularly as to how and at what levels Escherichia coli O157:H7 transfers among meat and cutting board (or equipment) surfaces. The objectives of this study were to determine and model transfer coefficients (TCs) between E. coli O157:H7 on beef tissue and high-density polyethylene (HDPE) cutting board surfaces. Four different transfer scenarios were evaluated: (i) HDPE board to agar, (ii) beef tissue to agar, (iii) HDPE board to beef tissue to agar, and (iv) beef tissue to HDPE board to agar. Also, the following factors were studied for each transfer scenario: two HDPE surface roughness levels (rough and smooth), two beef tissues (fat and fascia), and two conditions of the initial beef tissue inoculation with E. coli O157:H7 (wet and dry surfaces), for a total of 24 treatments. The TCs were calculated as a function of the plated inoculum and of the cells recovered from the first contact. When the treatments were compared, all of the variables evaluated interacted significantly in determining the TC. An overall TC-per-treatment model did not adequately represent the reduction of the cells on the original surface after each contact and the interaction of the factors studied. However, an exponential model was developed that explained the experimental data for all treatments and represented the recontamination of the surfaces with E. coli O157:H7. The parameters for the exponential model for cross-contamination with E. coli O157:H7 between beef tissue and HDPE surfaces were determined, allowing for the use of the resulting model in quantitative microbial risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-69.6.1248 | DOI Listing |
Animals (Basel)
January 2025
Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China.
Methionine is an amino acid necessary for the growth and development of all animals. Glutathione produced during methionine metabolism can reduce damage to cells caused by oxidative stress. Supplementing restricted amino acids in animals by scientific means will be beneficial to protein synthesis, which will affect the growth and development of animals and will bring huge economic benefits when applied to actual production and life.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico.
The objective of this study was to evaluate the changes in enzymic activity, metabolites, and hematological responses during the first 56-d of arrival of newly received calves, which were qualified at reception as high-risk but diagnosed as clinically healthy. A total of 320 blood samples were taken from 64 crossbred bull calves (average initial body weight = 148.3 ± 1.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.
Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.
Biomater Adv
January 2025
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Animal Breeding and Husbandry, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
Background: Obtaining information about the growth rates of animals' organs and tissues can help understand their meat production potential and determine the ideal slaughter weight (SW).
Objectives: This study aimed to determine the effects of production system and SW on the allometric growth of the non-carcass components, carcass cuts, and hind limb tissues of Kivircik lambs.
Methods: A total of 54 single-born male lambs were randomly allocated into production systems (concentrate- and pasture-based) and SW groups: 25-26 kg (LOW), 30-31 kg (MEDIUM), and 35-36 kg (HIGH).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!