In the last years several studies have shown that vascular endothelial growth factor (VEGF) is present in neural stem cells and mature neurons from different neural tissues where it may play an important role as a neuroproliferative and/or antiapoptotic factor. The olfactory neuroepithelium has the capability to replace dying neurons with new neurons formed by cell division from stem cells in the basal region of the epithelium. The present study demonstrates, for the first time, that VEGF is present in the olfactory epithelium, nerves and bulbs (both main and accessory) during the development of the toad Bufo arenarum. In this report, we detected VEGF immunoreactivity in mature olfactory neurons from early larval stages until the beginning of the metamorphic climax. VEGF expression decreases dramatically after metamorphosis. VEGF receptor Flk-1 was localized by immunohistochemistry, from premetamorphic larval stages until the climax in the neurons of the olfactory epithelium with a more intense labeling in the basal cell layer. Double-label immunofluorescence studies localized VEGF to the cytoplasm and the nucleus of mature neurons whereas Flk-1 was expressed in cell membranes. Flk-1 was present in neurons of both the main and accessory olfactory bulbs. After the end of metamorphosis, Flk-1 expression was limited to basal cells in the olfactory epithelium and Bowman's glands. The main and accessory olfactory bulbs showed the same pattern of Flk-1 immunostaining before and after the end of metamorphosis. The presence of VEGF and its receptor in the olfactory system suggests that VEGF may play an important role during neural development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-006-0105-1 | DOI Listing |
Appl Microsc
December 2024
Department of Science Education, Jeonju National University of Education, Jeonju, 55101, Republic of Korea.
The olfactory organ of Synechogobius hasta was investigated with a focus on its environmental adaptation, using stereo microscopy and light microscopy. This research revealed the following anatomical and histological characteristics: (i) tubular anterior nostril, (ii) one longitudinal lamella, (iii) two accessory nasal sacs, (iv) lymphatic cells in the lower part of the sensory epithelium, (v) four to five villi of olfactory receptor neurons, (vi) abundant blood capillaries beneath the sensory epithelium, and (vii) rod-shaped erythrocytes. These findings hint that the olfactory organ of S.
View Article and Find Full Text PDFSpecialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.
View Article and Find Full Text PDFElife
December 2024
Stowers Institute for Medical Research, Kansas City, United States.
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain.
The accessory olfactory bulb (AOB) processes chemical signals crucial for species-specific socio-sexual behaviors. There is limited information about the AOB of wild rodents, and this study aims to characterize the neurochemical organization of the AOB in the fossorial water vole (), a subterranean Cricetidae rodent. We employed histological, immunohistochemical, and lectin-histochemical techniques.
View Article and Find Full Text PDFCurr Biol
November 2024
Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!