Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50,000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518068 | PMC |
http://dx.doi.org/10.1021/bi060424r | DOI Listing |
Q Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFJ Mol Biol
May 2024
Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy. Electronic address:
The funneled energy landscape theory suggests that the folding pathway of homologous proteins should converge at the late stages of folding. In this respect, proteins displaying a broad energy landscape for folding are particularly instructive, allowing inferring both the early, intermediate and late stages of folding. In this paper we explore the folding mechanisms of human frataxin, an essential mitochondrial protein linked to the neurodegenerative disorder Friedreich's ataxia.
View Article and Find Full Text PDFPLoS Comput Biol
December 2023
Department of Chemistry, Texas A&M University, College Station Texas, Texas, United States of America.
Iron is an essential transition metal for all eukaryotic cells, and its trafficking throughout the cell is highly regulated. However, the overall cellular mechanism of regulation is poorly understood despite knowing many of the molecular players involved. Here, an ordinary-differential-equations (ODE) based kinetic model of iron trafficking within a growing yeast cell was developed that included autoregulation.
View Article and Find Full Text PDFFront Pharmacol
July 2023
Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Biallelic variants in are associated with a slowly progressive syndrome characterized by intellectual disability, spinocerebellar ataxia, cognitive decline and psychosis. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests diverse oligopeptides, including the mitochondrial targeting sequences (MTS) that are cleaved from proteins imported across the inner mitochondrial membrane by the mitochondrial processing peptidase (MPP). Mitochondrial peptidases also play a role in the maturation of Frataxin, the protein affected in Friedreich's ataxia.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2023
Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA.
Friedreich's ataxia (FRDA) is a hereditary cardiodegenerative and neurodegenerative disease that affects 1 in 50 000 Americans. FRDA arises from either a cellular inability to produce sufficient quantities or the production of a nonfunctional form of the protein frataxin, a key molecule associated with mitochondrial iron-sulfur cluster biosynthesis. Within the mitochondrial iron-sulfur cluster (ISC) assembly pathway, frataxin serves as an allosteric regulator for cysteine desulfurase, the enzyme that provides sulfur for [2Fe-2S] cluster assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!