Objectives: To determine the occurrence of antimicrobial resistance genes and role of integrons among 135 antimicrobial-resistant Salmonella enterica from Brazil.

Methods: The presence of antimicrobial resistance genes, class 1 and 2 integrons and gene cassettes was analysed by PCR and sequencing. The genetic location of class 1 integrons was determined in 25 isolates by hybridization and plasmid transfer experiments.

Results: Fifty-five of the isolates were positive for class 1 integrons. Integron-positive isolates represented 17 different serovars and were mainly from human (n=28) and animal (n=13) sources. The gene cassette arrangements could be determined in 51 of the positive isolates, which harboured one [dfrA22, aadA1 or orf3 (putative trimethoprim resistance)], two [aadA1-dfrA1, aac(6')-Ib-orf1 (unknown function) or aacA4-aadA1], three [dfrA15b-cmlA4-aadA2, orf2 (unknown function)-dfrA5-orfD] or four [orf4-aacA4-blaOXA-30 (interrupted by an IS1 element)-aadA1] cassettes in their variable region. Only one isolate harboured a class 2 integron with the gene cassette array dfrA1-sat-aadA1. Several integron unrelated resistance genes were also detected in the isolates. Sulphonamide resistance was primarily mediated by sul2 and sul3, tetracycline resistance by tet(B) and tet(A), chloramphenicol resistance by catA1, streptomycin resistance by strA and ampicillin resistance by blaTEM. blaCTX and blaCMY-2 were found in cephalosporin-resistant isolates. Mating and hybridization experiments demonstrated that a high-molecular-weight plasmid mediated the gene transfer of integrons and additional resistance determinants.

Conclusions: The present study revealed that integron-mediated resistance genes contributed to the multiresistance phenotype observed in the isolates, but most resistance genes were located outside the integron structure, as independent genes. However, they might be located on the same conjugative plasmid.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkl248DOI Listing

Publication Analysis

Top Keywords

resistance genes
24
resistance
12
antimicrobial resistance
12
class integrons
12
salmonella enterica
8
gene cassette
8
genes located
8
genes
7
isolates
7
integrons
5

Similar Publications

Inhibition of transcriptional regulation of detoxification genes contributes to insecticide resistance management in Spodoptera exigua.

Commun Biol

January 2025

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.

View Article and Find Full Text PDF

Culex quinquefasciatus is a widely spread mosquito species that poses a significant public health threat in many countries. This insect vector is present in the United Arab Emirates (UAE), yet no studies have been conducted on its resistance to any insecticide group. Research shows that controlling mosquitoes is crucial to eliminating mosquito-borne diseases, but when these vectors develop insecticide resistance, the situation can escalate dangerously out of control.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Revealing AIEC Virulence Genes Behind the Mask of Antimicrobial Resistance.

Cell Mol Gastroenterol Hepatol

January 2025

Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey. Electronic address:

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a global health challenge, particularly in maritime environments where unique conditions foster its emergence and spread. Characterized by confined spaces, high population density, and extensive global mobility, ships create a setting ripe for the development and dissemination of resistant pathogens. This review aims to analyse the contributing factors, epidemiological challenges, mitigation strategies specific to AMR on ships and to propose future research directions, bridging a significant gap in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!