This brief paper has two purposes. First, we gauge developments in the study of the Antarctic ice sheet over the last seven years by comparing the contents of this issue with the volume produced from an American Geophysical Union meeting, held in September 1998, on the West Antarctic ice sheet. We focus on the uptake of satellite-based observation; ice-ocean interactions; ice streams as foci of change within the ice sheet; and the time scales on which the ice sheet is thought to operate. Second, we attempt to anticipate the future challenges that the study of the Antarctic ice sheet will present. We highlight the role of the upcoming International Polar Year in facilitating a better coverage of in situ climatic observations over the continent; the pressing need to understand the causes and consequences of the contemporary changes observed in the Amundsen Sea sector of West Antarctica; and the need for improved physics in predictive models of the ice sheet.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2006.1802DOI Listing

Publication Analysis

Top Keywords

ice sheet
28
antarctic ice
16
ice
8
study antarctic
8
sheet
7
evolution antarctic
4
sheet understanding
4
understanding challenges
4
challenges paper
4
paper purposes
4

Similar Publications

Impact of civil war on the land cover in Myanmar.

Environ Monit Assess

January 2025

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.

Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.

View Article and Find Full Text PDF

High Arctic lakes reveal accelerating ecological shifts linked to twenty-first century warming.

Sci Rep

January 2025

Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.

The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.

View Article and Find Full Text PDF

The recent sea ice changes in the Northern Hemisphere (NH), necessitate elucidating the sea ice variability over the past 2.6 million years (Ma), when the Earth's glacial cycles transitioned from ∼41 to ∼100 kyr periodicity, following the Mid-Pleistocene Transition (MPT) period (0.7-1.

View Article and Find Full Text PDF

Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).

View Article and Find Full Text PDF

Predicting pack-ice seal occupancy of ice floes along the Western Antarctic Peninsula.

PLoS One

December 2024

Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.

We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!