Staphylococcus aureus is a ubiquitous pathogen causing infections in humans and domestic animals. It is often associated with bovine mastitis. Among secreted virulence factors, the leukotoxins constitute a family of toxins composed of two distinct subunits (class S and F proteins) which induce first Ca2+ influx and subsequent pore formation that allows ethidium entry. As mastitis-causing isolates harbor the genes of at least two, and often three leukotoxins, we compared the biological activities of the purified leukotoxins whose genes are found in mastitis-causing isolates on bovine polymorphonuclear neutrophils (PMN): spreading on a solid support, calcium influx and ethidium entry. In the spreading assay, the homologous pair LukM/LukF'-PV was the most active leukotoxin. Within each class, either S or F, subunits were interchangeable and generated leukotoxins with different specific activity. LukM was also very active when associated with heterologous F subunits. A similar ranking of homologous pairs was also found in the ethidium entry assay: LukM/LukF'-PV > HlgA/HlgB > HlgC/HlgB > LukE/LukD = LukEv/LukDv. In the Ca2+ flux assay, LukM/F'-PV was the most active pair, but gamma-hemolysin (Hlg) was also very efficient. LukEv/Dv was more active (twofold) than LukE/D in the spreading assay, but the two variants showed similar activities in the other two assays. Supposing that spreading and ethidium entry (pore formation) reflect toxic activities on bovine PMN, and Ca2+ influx cell activation, LukM/F'-PV was by far the most cytotoxic leukotoxin, but it was closely followed by gamma-hemolysin for PMN activation. These results suggest that LukM/F'-PV may constitute a particular virulence attribute of mastitis-causing S. aureus strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2006.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!