A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Rac1. | LitMetric

Reactive oxygen species (ROS) are acknowledged generally to be multi-faceted regulators of cellular functions that trigger various pathological states when present chronically or transiently at non-physiologically high levels. Here we focus on the physiological involvement of ROS in cellular motility, with special emphasis on endothelial cells (EC). An important source of ROS within EC is the non-phagocytic NAD(P)H oxidase, and the small GTPase Rac1 plays a central role in activating this complex. Rac1 is one of the three Rho-family molecules (Rac, Rho and Cdc42) involved in the control of the actin cytoskeleton in response to various signals. In this review we examine the evidence linking ROS production, Rac1 activation and actin organization to EC motility, considering mechanisms for direct interaction of ROS and actin and the effects of ROS on proteins that regulate the actin cytoskeleton. The accumulated evidence suggests that ROS are important regulators of the actin cytoskeletal dynamics and cellular motility, and more in-depth studies are needed to understand the underlying mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2006.05.003DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
nadph oxidase
8
cellular motility
8
actin cytoskeleton
8
ros
7
actin
5
species vascular
4
vascular endothelial
4
endothelial cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!