G-protein-coupled receptor kinase (GRK) 2 regulates a plethora of cellular processes, including cardiac expression and function of key seven-transmembrane receptors (7TM receptors) such as the beta-adrenergic and angiotensin receptors (Penela P, Murga C, Ribas C, et al.: 2006. Mechanisms of regulation of G-protein-coupled receptor kinases [GRKs] and cardiovascular disease. Cardiovasc Res 69:46-56, Rockman HA, Koch WJ, Lefkowitz RJ: 2002. Seven-transmembrane-spanning receptors and heart function. Nature 415:206-212). Interestingly, these two G-protein-coupled receptor systems are targeted by modern heart failure treatment including beta-adrenergic blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers. Although GRK2 is ubiquitously expressed, its particular importance in the heart has been demonstrated by interesting phenotypes of genetically altered mice that suggest GRK2 inhibition can ameliorate heart failure. In essence, this work suggests GRK2 could be an endogenous receptor blocker targeting both the beta-adrenergic and angiotensin receptors in the heart. This notion immediately suggests it is important to understand the molecular mechanisms that regulate GRK2 activity in the heart. In this review, we provide a detailed presentation of the tight regulation of GRK2 expression levels and protein activity, and we discuss the cardiovascular GRK2 functions and possible therapeutic perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcm.2006.03.004 | DOI Listing |
Sci Rep
December 2024
Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening.
View Article and Find Full Text PDFBrain Res
December 2024
Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark. Electronic address:
Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HTR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HTR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.
Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.
Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!