Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: an FT-IR study.

Biochim Biophys Acta

Lehrstuhl für Fluidmechanik und Prozessautomation, Technische Universität München, Weihenstephaner Steig 23, D-85350 Freising, Germany.

Published: July 2006

The heat inactivation of Lactococcus lactis was studied by determination of cell counts, and by FT-IR spectroscopy recording the average structure of cell proteins. Cell counts were measured after incubation milk buffer or milk buffer with 1. 5 M sucrose, and FT-IR spectra were recorded in (2)H(2)O or (2)H(2)O with 1. 5 M sucrose in the range of 6-75 degrees Celsius. Sucrose protected L. lactis against heat inactivation. The cell counts differed by up to 6-log cycles after treatment in milk buffer as compared to milk buffer with sucrose. The (1)H/(2)H exchange in proteins, and secondary structure elements were detected by the analysis of amide I', amide II and amide II' bands. A reduced (1)H/(2)H exchange as well as a lower content of disordered structural elements was observed when sucrose was present. Conformational fluctuations of native proteins as indicated by the (1)H/(2)H exchange were apparent already at sublethal temperatures. The loss of viability of L. lactis occurred in the same temperature range as the loss of the protein secondary structure. These results demonstrate that sucrose protects L. lactis against heat inactivation, and that the increased heat stability of proteins in the presence of sucrose contributed to this enhanced heat resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2006.04.016DOI Listing

Publication Analysis

Top Keywords

milk buffer
16
heat inactivation
12
cell counts
12
1h/2h exchange
12
lactococcus lactis
8
buffer sucrose
8
lactis heat
8
secondary structure
8
amide amide
8
sucrose
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!