Host fish acquire resistance to the parasitic larvae (glochidia) of freshwater mussels (Unionidae). Glochidia metamorphose into juvenile mussels while encysted on host fish. We investigated the duration of acquired resistance of largemouth bass, Micropterus salmoides (Lacepède, 1802) to glochidia of the broken rays mussel, Lampsilis reeveiana (Call, 1887). Fish received three successive priming infections with glochidia to induce an immune response. Primed fish were held at 22-23 degrees C and were challenged (re-infected) at intervals after priming. Metamorphosis success was quantified as the percent of attached glochidia that metamorphosed to the juvenile stage and were recovered alive. Metamorphosis success at 3, 7, and 12 months after priming was significantly lower on primed fish (26%, 40%, and 68% respectively) than on control fish (85%, 93%, and 92% respectively). A second group of largemouth bass was similarly primed and blood was extracted. Immunoblotting was used to detect host serum antibodies to L. reeveiana glochidia proteins. Serum antibodies were evident in primed fish, but not in naive control fish. Acquired resistance of host fish potentially affects natural reproduction and artificial propagation of unionids, many of which are of conservation concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2006.02.002 | DOI Listing |
Extremophiles
January 2025
Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
To fish-out novel salt-tolerance genes, metagenomic DNA of moderately saline sediments of India's largest hypersaline Sambhar Lake was cloned in fosmid. Two functionally-picked clones helped the Escherichia coli host to tolerate 0.6 M NaCl.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.
View Article and Find Full Text PDFFront Immunol
January 2025
Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.
View Article and Find Full Text PDFActa Trop
January 2025
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia. Electronic address:
Cell models emulating an in vitro parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate in vitro model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China. Electronic address:
Rahnella aquatilis is an emerging opportunistic pathogen that usually causes septicaemia in fish and poses a potential threat to human health. VgrG gene is an important virulence factor of type VI secretion system in R. aquatilis, but its regulatory mechanism underlying PANoptosis is still unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!