Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus.

J Virol Methods

Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062, PR China.

Published: September 2006

Foot-and-mouth disease virus (FMDV) is an important pathogen with worldwide economic consequences. Consequently, an important goal is the development of a vaccine that can provide rapid protection while overcoming the potential risk associated with the production of conventional inactivated vaccines. An important secondary feature of the vaccine would be the ability to distinguish vaccinated from infected animals. A recombinant fowlpox virus (vUTAL3CP1) containing FMDV capsid polypeptide and 3C coding regions of O/NY00 was constructed and evaluated for its ability to induce humoral and cellular responses in mice and guinea pigs. In addition, the ability to protect guinea pigs against homologous virus challenge was examined. Mice and guinea pigs were given booster vaccinations twice and once, respectively, and guinea pigs were challenged 20 days after the booster vaccination. Control groups included animals inoculated with commercial vaccine, fowlpox virus or phosphate-buffered saline (PBS). All animals vaccinated with vUTAL3CP1 developed specific anti-FMDV antibody and neutralizing antibody, as well as T lymphocyte proliferation response and CTL cytotoxic activity. Three of four guinea pigs vaccinated with vUTAL3CP1 were completely protected from viral challenge. The results demonstrated the potential of a fowlpox virus-based recombinant FMD vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2006.05.019DOI Listing

Publication Analysis

Top Keywords

guinea pigs
20
fowlpox virus
12
recombinant fowlpox
8
coding regions
8
foot-and-mouth disease
8
disease virus
8
mice guinea
8
vaccinated vutal3cp1
8
virus
6
guinea
5

Similar Publications

The cooling procedure markedly diminishes the quality of guinea pig () sperms, primarily because their membranes are highly susceptible to this process. This susceptibility triggers the generation of reactive oxygen species and free radicals, ultimately leading to lipid peroxidation in the sperm membrane. Surprisingly, there has been a lack of research on the use of Tris-based extenders to safeguard guinea pig sperm under refrigeration conditions.

View Article and Find Full Text PDF

Background: Noise-induced hearing loss (NIHL) is a kind of acquired sensorineural hearing loss and has shown an increasing incidence in recent years. Hence, elucidating the exact pathophysiological mechanisms and proposing effective treatment and prevention methods become the top priority. Though a great number of researches have been carried out on NIHL, few of them were focused on metabolites.

View Article and Find Full Text PDF

Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.

View Article and Find Full Text PDF

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

The order Rodentia comprises nearly 45% of all extant taxa, currently organized into 31 living families, some 450 genera, and roughly 2010 species (Kelt & Patton, 2020). Considering that rodents began evolving at least 66 million years ago, it is not surprising that they have diversified into five distinct suborders. With the advent of molecular biology, this difference can often be seen at the molecular level as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!