The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2006.02928.x | DOI Listing |
PNAS Nexus
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven 3000, Belgium.
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
Background: The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species.
View Article and Find Full Text PDFVirus Evol
November 2024
Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Private Bag BO 320, Botswana.
Botswana, like the rest of the world, has been significantly impacted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In December 2022, we detected a monophyletic cluster of genomes comprising a sublineage of the Omicron variant of concern (VOC) designated as B.1.
View Article and Find Full Text PDFJ Med Virol
December 2024
Virology Unit and Bioinformatics Centre, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India.
Hepatitis C virus (HCV) is a pathogenic virus of global health concern. The phylodynamics of HCV genotypes/subtypes 1a, 1b, 2, and 3 are explored only for specific geographic regions. However, their genome based global origin and detailed spatiotemporal spread, have yet to be extensively studied.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Marine Zoology, Biodiversity Information Section, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
Amphipods are known as umbrella species in conservation biology that their protection indirectly protects other species. Recent hypotheses suggest a bimodal latitudinal global species richness pattern for amphipods, irrespective of species' depth or habitat type. Phylogeographic hypotheses suggested two distinct procedures for amphipod diversification: ecological radiation and Pangea fragmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!