Phosphaalkenes (MesP=CRR': R = R' = Ph (1a); R = R' = 4-FC6H4 (1b); R = Ph, R' = 4-FC6H4 (1c); R = R' = 4-OMeC6H4 (1d); R = Ph, R' = 4-OMeC6H4 (1e); R = Ph, R' = 2-pyridyl (1f)) are prepared from the reaction of MesP(SiMe3)2 and O=CRR' in the presence of a trace of KOH or NaOH. The base-catalyzed phospha-Peterson reaction is quantitated by NMR spectroscopy, and isolated yields of phosphaalkene between 40 and 70% are obtained after vacuum distillation and/or recrystallization. The asymmetrically substituted phosphaalkenes (1c, 1e, 1f) form as 1:1 mixtures of E and Z isomers; however, X-ray crystallography reveals that the E isomers crystallize preferentially. Interestingly, E-1e and E-1f readily isomerize in solution in the dark, although the rate of isomerization is much faster when samples are exposed to light. X-ray crystal structures of 1b, E-1e, and E-1f reveal that the P=C bond lengths (average of 1.70 A) are in the long end of the range typically found in phosphaalkenes (1.61-1.71 A). Attempts to prepare isolable P-adamantyl phosphaalkenes following this route were unsuccessful. Although AdP=CPh2 (2a) is detected by 31P NMR spectroscopy, attempts to isolate this species afforded the 1,2-diphosphetane (AdPCPh2)2 (3a), which was characterized by X-ray crystallography.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic060236pDOI Listing

Publication Analysis

Top Keywords

base-catalyzed phospha-peterson
8
nmr spectroscopy
8
x-ray crystallography
8
e-1e e-1f
8
scope limitations
4
limitations base-catalyzed
4
phospha-peterson p=c
4
p=c bond-forming
4
bond-forming reaction
4
phosphaalkenes
4

Similar Publications

Phosphaalkenes (MesP=CRR': R = R' = Ph (1a); R = R' = 4-FC6H4 (1b); R = Ph, R' = 4-FC6H4 (1c); R = R' = 4-OMeC6H4 (1d); R = Ph, R' = 4-OMeC6H4 (1e); R = Ph, R' = 2-pyridyl (1f)) are prepared from the reaction of MesP(SiMe3)2 and O=CRR' in the presence of a trace of KOH or NaOH. The base-catalyzed phospha-Peterson reaction is quantitated by NMR spectroscopy, and isolated yields of phosphaalkene between 40 and 70% are obtained after vacuum distillation and/or recrystallization. The asymmetrically substituted phosphaalkenes (1c, 1e, 1f) form as 1:1 mixtures of E and Z isomers; however, X-ray crystallography reveals that the E isomers crystallize preferentially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!