AI Article Synopsis

  • The urgent need for an effective vaccine against avian H5N1 influenza is highlighted by multiple cases of human transmission.
  • Ferrets were immunized with an inactivated whole-virus vaccine and showed protective antibody responses, preventing infection from various strains of the virus.
  • The study concludes that H5N1 vaccines could provide better cross-protection than expected, making them viable candidates for initial pandemic vaccine stockpiling.

Article Abstract

Background: Multiple cases of transmission of avian H5N1 influenza viruses to humans illustrate the urgent need for an efficacious, cross-protective vaccine.

Methods: Ferrets were immunized with inactivated whole-virus vaccine produced by reverse genetics with the hemagglutinin (HA) and neuraminidase genes of A/HK/213/03 virus. Ferrets received a single dose of vaccine (7 or 15 microg of HA) with aluminum hydroxide adjuvant or 2 doses (7 microg of HA each) without adjuvant and were challenged with 10(6) 50% egg infectious doses of A/HK/213/03, A/HK/156/97, or A/Vietnam/1203/04 virus.

Results: One or 2 doses of vaccine induced a protective antibody response to the vaccine strain. All immunization regimens completely protected ferrets from challenge with homologous wild-type A/HK/213/03 virus: no clinical signs of infection were observed, virus replication was significantly reduced (P<.05) and was restricted to the upper respiratory tract, and spread of virus to the brain was prevented. Importantly, all vaccinated ferrets were protected against lethal challenge with the highly pathogenic strain A/Vietnam/1203/04. The 2-dose schedule induced higher levels of antibodies that were cross-reactive to antigenically distinct H5N1 viruses.

Conclusions: H5N1 vaccines may stimulate an immune response that is more cross-protective than what might be predicted by in vitro assays and, thus, hold potential for being stockpiled as "initial" pandemic vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1086/505225DOI Listing

Publication Analysis

Top Keywords

h5n1 influenza
8
a/hk/213/03 virus
8
vaccine
5
immunization reverse-genetics-produced
4
reverse-genetics-produced h5n1
4
influenza vaccine
4
vaccine protects
4
ferrets
4
protects ferrets
4
ferrets homologous
4

Similar Publications

We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.

View Article and Find Full Text PDF

Asymptomatic infection and antibody prevalence to co-occurring avian influenza viruses vary substantially between sympatric seabird species following H5N1 outbreaks.

Sci Rep

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.

Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.

View Article and Find Full Text PDF

Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.

View Article and Find Full Text PDF

Purification immunoglobulin yolk anti avian influenza H5N1 in poultry using hydrophobic interaction chromatography.

Poult Sci

January 2025

Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, West Java, 40132, Indonesia; Faculty of Pharmacy, Universitas Bhakti Kencana, West Java, 40614, Indonesia.

Avian influenza is a significant threat to the poultry industry, and it has become an outbreak in many countries because of its mortality and morbidity. Concerns about the history of avian influenza outbreaks has prompted all countries to enhance their independence in pharmaceutical and biological components as a preparedness measure for any potential occurrences. The production of antibodies such as IgY is a potential alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!