An open source model for open access journal publication.

AMIA Annu Symp Proc

Laboratory of Computer Science, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.

Published: February 2007

We describe an electronic journal publication infrastructure that allows a flexible publication workflow, academic exchange around different forms of user submissions, and the exchange of articles between publishers and archives using a common XML based standard. This web-based application is implemented on a freely available open source software stack. This publication demonstrates the Dermatology Online Journal's use of the platform for non-biased independent open access publication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560685PMC

Publication Analysis

Top Keywords

open source
8
open access
8
journal publication
8
publication
5
open
4
source model
4
model open
4
access journal
4
publication describe
4
describe electronic
4

Similar Publications

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

In cybersecurity, anomaly detection in tabular data is essential for ensuring information security. While traditional machine learning and deep learning methods have shown some success, they continue to face significant challenges in terms of generalization. To address these limitations, this paper presents an innovative method for tabular data anomaly detection based on large language models, called "Tabular Anomaly Detection via Guided Prompts" (TAD-GP).

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.

View Article and Find Full Text PDF

Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!