In vitro differentiation of mesenchymal stem cells (MSCs) into chondrogenic cells and their transplantation is promising as a technique for the treatment of cartilaginous defects. But the regulation of extracellular matrix (ECM) formation remains elusive. Therefore, the objective of this study was to analyze the regulation of proteoglycan (PG) biosynthesis during the chondrogenic differentiation of MSCs. In different stages of chondrogenic differentiation, we analyzed mRNA and protein expression of key enzymes and PG core proteins involved in ECM development. For xylosyltransferase I (XT-I), we found maximum mRNA levels 48 hours after chondrogenic induction with a 5.04 +/- 0.58 (mean +/- SD)-fold increase. This result correlates with significantly elevated levels of enzymatic XT-I activity (0.49 +/- 0.03 muU/1 x 10(6) cells) at this time point. Immunohistochemical staining of XT-I revealed a predominant upregulation in early chondrogenic stages. The highly homologous protein XT-II showed 4.7-fold (SD 0.6) increased mRNA levels on day 7. To determine the differential expression of heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS) chains, we analyzed the mRNA expression of EXTL2 (alpha-4-N-acetylhexosaminyltransferase), GalNAcT (beta-1,4-N-acetylgalactosaminyltransferase), and GlcAC5E (glucuronyl C5 epimerase). All key enzymes showed a similar regulation with temporarily downregulated mRNA levels (up to -87-fold) after chondrogenic induction. In accordance to previous studies, we observed a similar increase in the expression of PG core proteins. In conclusion, we could show that key enzymes for CS, DS, and HS synthesis, especially XT-I, are useful markers for the developmental stages of chondrogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2005-0508 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:
Osteoarthritis affects approximately 500 million individuals globally, with severe cases often leading to osteochondral defects. Biomimetic collagen-hydroxyapatite scaffolds have been investigated for the treatment of osteochondral defects. However, achieving precise mimicry of the intricate composition, gradient nanostructure, and biological function of native tissue remains a formidable challenge.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFCell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:
Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!