A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mechanical model for adjustable passive stiffness in rabbit detrusor. | LitMetric

A mechanical model for adjustable passive stiffness in rabbit detrusor.

J Appl Physiol (1985)

Department of Mechanical Engineering, Virginia Commonwealth University, 601 West Main St., P. O. Box 843015, Richmond, 23284-3015, USA.

Published: October 2006

Strips of rabbit detrusor smooth muscle (DSM) exhibit adjustable passive stiffness characterized by strain softening: a loss of stiffness on stretch to a new length distinct from viscoelastic behavior. At the molecular level, strain softening appears to be caused by cross-link breakage and is essentially irreversible when DSM is maintained under passive conditions (i.e., when cross bridges are not cycling to produce active force). However, on DSM activation, strain softening is reversible and likely due to cross-link reformation. Thus DSM displays adjustable passive stiffness that is dependent on the history of both muscle strain and activation. The present study provides empirical data showing that, in DSM, 1) passive isometric force relaxation includes a very slow component requiring hours to approach steady state, 2) the level of passive force maintained at steady state is less if the tissue has previously been strain softened, and 3) tissues subjected to a quick-release protocol exhibit a biphasic response consisting of passive force redevelopment followed by force relaxation. To explain these and previously identified characteristics, a mechanical model for adjustable passive stiffness is proposed based on the addition of a novel cross-linking element to a hybrid Kelvin/Voigt viscoelastic model.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00396.2006DOI Listing

Publication Analysis

Top Keywords

adjustable passive
16
passive stiffness
16
strain softening
12
mechanical model
8
model adjustable
8
passive
8
rabbit detrusor
8
force relaxation
8
steady state
8
passive force
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!