The circadian clock is driven by cell-autonomous transcription/translation feedback loops. The BMAL1 transcription factor is an indispensable component of the positive arm of this molecular oscillator in mammals. Here, we present a molecular genetic screening assay for mutant circadian clock proteins that is based on real-time circadian rhythm monitoring in cultured fibroblasts. By using this assay, we identified a domain in the extreme C terminus of BMAL1 that plays an essential role in the rhythmic control of E-box-mediated circadian transcription. Remarkably, the last 43 aa of BMAL1 are required for transcriptional activation, as well as for association with the circadian transcriptional repressor CRYPTOCHROME 1 (CRY1), depending on the coexistence of CLOCK protein. C-terminally truncated BMAL1 mutant proteins still associate with mPER2 (another protein of the negative feedback loop), suggesting that an additional repression mechanism may converge on the N terminus. Taken together, these results suggest that the C-terminal region of BMAL1 is involved in determining the balance between circadian transcriptional activation and suppression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502508 | PMC |
http://dx.doi.org/10.1073/pnas.0601416103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!