Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(75)80187-2DOI Listing

Publication Analysis

Top Keywords

pyruvate oxidase
4
oxidase coa
4
coa acetylating
4
acetylating entamoeba
4
entamoeba histolytica
4
pyruvate
1
coa
1
acetylating
1
entamoeba
1
histolytica
1

Similar Publications

Microalgal-based urea wastewater treatment with p-Hydroxybenzoic acid enhances resource recovery and mitigates biological risks from Bisphenol A.

Water Res

January 2025

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:

Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.

View Article and Find Full Text PDF

ATP Regeneration from Pyruvate in the PURE System.

ACS Synth Biol

January 2025

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.

The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .

View Article and Find Full Text PDF

Relationship Between Mitochondrial Biological Function and Breast Cancer: An Approach Based on Mendelian Randomization Analysis.

Breast J

January 2025

Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

This study aims to investigate the potential causal link between mitochondrial function and breast cancer using the Mendelian randomization (MR) analysis. The data used for this study were obtained from genomewide association studies (GWAS) databases on mitochondrial biological function and breast cancer. Mitochondrial function was considered the exposure variable, breast cancer the outcome variable, and specific single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs).

View Article and Find Full Text PDF

The Mitochondrial Lactate Oxidation Complex: endpoint for carbohydrate carbon disposal.

Am J Physiol Endocrinol Metab

December 2024

Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.

The Lactate Shuttle concept has revolutionized our understanding and study of metabolism in physiology, biochemistry, metabolism, nutrition, and medicine. Seminal findings of the Mitochondrial Lactate Oxidation Complex (mLOC) elucidated the architectural structure of its components. Here, we report that the mitochondrial pyruvate carrier (mPC) is an additional member of the mLOC in mouse muscle and C2C12 myoblasts and myotubes.

View Article and Find Full Text PDF

Introduction: Hyperuricemia (HUA) is a metabolic disease caused by purine metabolism disorders in the body. Lactic acid bacteria (LAB) and their fermentation broth have the potential to alleviate hyperuricemia, but the potential mechanism of action is still unclear.

Methods: The LAB with high inhibitory activity against xanthine oxidase (XOD) were screened out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!