The bcl-2 major breakpoint region (mbr) possesses transcriptional regulatory function.

Gene

Key Laboratory of Human Functional Genomics of Jiangsu Province, PR China.

Published: September 2006

The bcl-2 major breakpoint region (mbr), located within the 3'-UTR of the bcl-2 gene, is the site of the most common chromosomal translocation, t(14;18) (q32;q21), which occurs in follicular lymphoma. The mbr forms a triplex DNA structure under physiological conditions and the transcription factor special AT-rich sequence-binding protein 1 (SATB1) binds immediately downstream of the mbr. These observations raise the possibility that the mbr may be involved in regulation of bcl-2 gene expression. We investigated the role of the bcl-2 mbr on reporter gene activity and the relevance of SATB1 to this function in a variety of cell lines. We found that the mbr up-regulated reporter gene expression. Deletion of the 37-bp AT-rich SATB1 binding site abolished the bcl-2 mbr regulation of reporter gene expression. Overexpression of SATB1 enhanced bcl-2 mbr up-regulation of the reporter gene activity. Our data strongly demonstrated that the bcl-2 mbr possessed regulatory function that was related to SATB1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2006.05.002DOI Listing

Publication Analysis

Top Keywords

bcl-2 mbr
16
reporter gene
16
gene expression
12
mbr
10
bcl-2
8
bcl-2 major
8
major breakpoint
8
breakpoint region
8
region mbr
8
regulatory function
8

Similar Publications

Cancer is one of the major leading causes of mortality globally and chemo-drug-resistant cancers pose significant challenges to cancer treatment by reducing patient survival rates and increasing treatment costs. Although the mechanisms of chemoresistance vary among different types of cancer, cancer cells are known to share several hallmarks, such as their resistance to apoptosis as well as the ability of cancer stem cells to produce metastatic daughter cells that are resistant to chemotherapy. To address the issue of chemo-drug resistance in cancer cells, a tetracistronic expression construct, Ad-MBR-GFP, encoding adenovirus-mediated expression of MOAP-1, Bax, RASSSF1A, and GFP, was generated to investigate its potential activity in reducing or inhibiting the chemo-drug resistant activity of the human breast cancer cells, MCF-7-CR and MDA-MB-231.

View Article and Find Full Text PDF

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy.

View Article and Find Full Text PDF

Background: t(14;18)(q32;q21) translocation is an important genetic feature of follicular lymphoma resulting in antiapoptotic B-cell lymphoma 2 (BCL2) protein overexpression. On chromosome 18 breakpoint-site variation is high but does not affect BCL2. Breakpoint most commonly occurs at major breakpoint region (MBR) but may happen at minor cluster region (mcr) and between MBR and mcr at 3'MBR and 5'mcr.

View Article and Find Full Text PDF

New synthetic phenylquinazoline derivatives induce apoptosis by targeting the pro-survival members of the BCL-2 family.

Bioorg Med Chem Lett

July 2022

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia. Electronic address:

Chemo-resistant cancer cells acquire robust growth potential through cell signaling mechanisms such as the down-regulation of tumor suppressors and the up-regulation of pro-survival proteins, respectively. To overcome chemo-resistance of cancer, small molecule drugs that interact with the cell signaling proteins to enhance sensitization of cancer cells toward cancer therapies are likely to be effective for the treatment of chemo-drug resistant cancer. To identify high potency small molecules, a series of ten novel phenylquinazoline derivatives were synthesized to determine their cellular effects in MCF-7 and MCF-7- cisplatin-resistant (CR) human breast cancer cells which led to the identification of two bioactive compounds, SMS-IV-20 and SMS-IV-40, that exhibited an elevated level of cytotoxicity against the human breast cancer cells and spheroid cells.

View Article and Find Full Text PDF

Purpose: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells.

Methods: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!