Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper describes the preparation of Au core-Au-Ag shell nanoparticles (NPs) in different morphologies by controlling both the pH and the glycine concentration. Using a seed-growth method, we prepared high-quality Au core-Au-Ag shell NPs from a glycine solution under alkaline conditions (pH>8.5). By controlling both the pH and the glycine concentration, we prepared dumbbell-shaped and peanut-shaped Au core-Au-Ag shell NPs readily by depositing gold and silver, reduced by ascorbate, onto the gold nanorods. We have found that the glycine concentration that is optimal for preparing high-quality Au core-Au-Ag shell NPs differs at the various values of pH. At pH<8.5, the glycine concentration is not important, but, when preparing dumbbell- and peanut-shaped Au core-Au-Ag shell NPs, it should be greater than 50 mM and greater than 20 mM at pH 9.5 and 10.5, respectively. Glycine plays a number of roles during the synthesis of the Au core-Au-Ag shell NPs by controlling the solution pH, altering the reduction potentials of gold and silver ions through forming complexes with metal ions (Au(+) and Ag(+)), minimizing the formation of Ag(2)O, AgCl, and AgBr precipitates, and stabilizing the thus-prepared NPs. At pH 9.7, we observed the changes in the morphologies of the Au core-Au-Ag shell NPs-from regular (rectangular) to peanut- and dumbbell-shaped, and finally to jewel-, diamond-, and/or sphere-shaped-that occurred during the course of a 60-min reaction. In addition, we were able to affect the shapes and sizes of the Au core-Au-Ag shell NPs by controlling the reaction time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2006.04.079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!