[Study on the expression of epidermal growth factor receptor and p53 in astrocytic gliomas: evidence for a distinct genetic pathway].

Zhonghua Bing Li Xue Za Zhi

Department of Neurosurgery, Tianjin Medical University General Hospital and Lab of Neurooncology, Tianjin Neurological Institute, Tianjin 300052, China.

Published: April 2006

Objective: To study further the most important and frequent genetic alterations of p53 and epidermal growth factor receptor (EGFR) in astrocytic gliomas.

Methods: (1) EGFR expression was examined in samples collected from 37 astrocytic gliomas and 6 normal brain tissue using reverse transcriptase polymerase chain reaction and immunohistochemical staining. (2) p53 gene mutation and accumulation were detected simultaneously in the same specimens using PCR-SSCP, DNA sequencing and immunohistochemical staining.

Results: The frequency of p53 mutation in diffuse astrocytomas, anaplastic astrocytomas, primary glioblastomas and secondary glioblastomas was 1/10, 4/19 (21.1%), 4/6 and 2/2, respectively and the frequency of EGFR overexpression was 5/10, 10/19 (52.6%), 5/6 and 2/2, respectively. Both p53 accumulation and EGFR overexpression increased accompanied by a successive increase of degree of the glioma malignancy.

Conclusions: EGFR overexpression is not infrequently seen, however, p53 mutation is rarely seen in the low grade gliomas. Both p53 gene mutation and EGFR overexpression are often associated with primary and secondary glioblastoma. Consequently, EGFR overexpression and p53 gene mutation are not mutually exclusive in astrocytic gliomagenesis but synergistically to promote the glioma progression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

egfr overexpression
20
p53 gene
12
gene mutation
12
epidermal growth
8
growth factor
8
factor receptor
8
p53
8
astrocytic gliomas
8
p53 mutation
8
egfr
7

Similar Publications

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand.

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Background: Osimertinib is the standard first-line treatment for advanced epidermal growth factor receptor (EGFR)-mutated NSCLC. However, treatment resistance is inevitable and increased c-Met protein expression correlates with resistance. Telisotuzumab vedotin (Teliso-V) is an antibody-drug conjugate that targets c-Met protein overexpression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!