Streptococcus pneumoniae produces a zinc metalloproteinase, Iga, which cleaves human immunoglobulin A1 (IgA1), and whose activity is predominantly localized to the bacterial surface. However, proper surface localization is not predicted using current models, as the LPNTG sorting motif is located atypically near the amino- rather than the carboxy-terminus. The cell-associated form of Iga was confirmed to be external to the bacterial membrane, and while bound tightly, its attachment to the cell wall is non-covalent, but dependent on both a complete LPNTG sequence and sortase activity. Disruption of the region between the signal peptidase cleavage site and the LPNTG domain resulted in a localization defect, premature degradation, and an alteration of the ability of the enzyme to act on a monoclonal human IgA1 substrate and to enhance bacterial adherence, linking localization to enzyme function. Edman sequencing of cell-associated Iga determined that the enzyme is processed at an unexpected site downstream of the sorting signal yet still associates with the bacterial surface. Our results indicate a non-covalent re-association between the carboxy-terminal enzymatic domain and the cleaved, sorted amino-terminal localization domain. This amino-terminal motif is shared among the other zinc metalloproteinases in streptococci and suggests a novel conserved mechanism for the surface localization of protease activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2006.05256.xDOI Listing

Publication Analysis

Top Keywords

bacterial surface
8
surface localization
8
localization
6
atypical amino-terminal
4
amino-terminal lpntg-containing
4
domain
4
lpntg-containing domain
4
domain pneumococcal
4
pneumococcal human
4
human iga1-specific
4

Similar Publications

Overlooked tripartite microbial interactions influencing chemical cycling in the ocean.

Trends Microbiol

January 2025

Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales 2007, Australia; UAR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France. Electronic address:

Inter-microbial interactions fundamentally govern ocean ecology and biogeochemistry. Recently, Henshaw and colleagues revealed that important inter-bacterial associations in the ocean can be shaped by viral infections, whereby infected cyanobacteria release specific chemicals that attract heterotrophic bacteria, uncovering a new tripartite microbial interaction that influences carbon transfer in the surface ocean.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!