Synthesis of conformationally constrained lysine analogues.

J Org Chem

Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.

Published: June 2006

The synthesis of two conformationally constrained lysine analogues is reported. The synthesis of the novel analogue 1 based on the 3-aza-bicyclo[3.1.0]hexane system is accomplished from the known tricycle 3 in eight steps. The synthesis of the analogue 2 is accomplished in eight steps from 4-hydroxy proline. Both analogues are synthesized appropriately protected for Fmoc/Boc solid-phase peptide synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo060210fDOI Listing

Publication Analysis

Top Keywords

synthesis conformationally
8
conformationally constrained
8
constrained lysine
8
lysine analogues
8
synthesis
5
analogues synthesis
4
analogues reported
4
reported synthesis
4
synthesis novel
4
novel analogue
4

Similar Publications

The convergent total synthesis of ixabepilone and its analogues in a 13-step longest linear sequence is reported. The crucial chiral centers at challenging C3-O, C8-C and C15-N positions on the scaffold of the ixabepilone were installed via highly efficient asymmetric hydrogenations (up to 95% yield and up to 99% e.e.

View Article and Find Full Text PDF

Synthesis of Atropisomeric Quinazolin-4-one Derivatives Based on Remote H/D and C/C Discrimination.

J Org Chem

December 2024

Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.

Both enantiomers of 2-ethylquinazolin-4-ones bearing -CHO/CDO and CHO/CHO phenyl groups at the N3 position were prepared. These are isotopic atropisomeric compounds based on a remote and conformationally flexible H/D and C/C discrimination, and it was found that a CHCl solution of -CHO/CDO derivative shows a slight specific optical rotation. Furthermore, diastereomeric quinazolinone derivatives bearing a chiral carbon were prepared, and their stereochemical purities and rotational stability as well as the isotopic atropisomerism were verified by H NMR and chiral high-performance liquid chromatography (HPLC) analyses.

View Article and Find Full Text PDF

Tunability in Heterobimetallic Complexes Featuring an Acyclic "Tiara" Polyether Motif.

Inorg Chem

December 2024

Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States.

Both cyclic "crown" and acyclic "tiara" polyethers have been recognized as useful for the binding of metal cations and enabling the assembly of multimetallic complexes. However, the properties of heterobimetallic complexes built upon acyclic polyethers have received less attention than they deserve. Here, the synthesis and characterization of a family of eight redox-active heterobimetallic complexes that pair a nickel center with secondary redox-inactive cations (K, Na, Li, Sr, Ca, Zn, La, and Lu) bound in acyclic polyether "tiara" moieties are reported.

View Article and Find Full Text PDF

In this manuscript, an oxidative carbon-carbon bond forming reaction to construct the framework of alkaloids such as scholarinine A is explored using a constrained substrate. Instead of the desired carbon-carbon bond formation between an indole C3 position and a malonate group, a competing carbon-nitrogen bond between the malonate and indole C3 position was observed to form. This work adds to the growing body of substrates for oxidative carbon-carbon bond formation and importantly, demonstrates that these reactions are challenging for some conformationally constrained substrates.

View Article and Find Full Text PDF

Bottlebrush polymers are complex architectures with densely grafted polymer side chains along polymeric backbones. The dense and conformationally extended chains in bottlebrush polymers give rise to unique properties, including low chain entanglement, low critical aggregation concentrations, and elastomeric properties in the bulk phase. Conjugated polymers have garnered attention as lightweight, processible, and flexible semi-conducting materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!