Topical tretinoin is highly effective and widely used in the treatment of acne vulgaris. Tretinoin gel microsphere 0.1% (TGM)--alone or in combination with erythromycin-benzoyl peroxide (EBP) or clindamycin-benzoyl peroxide (CBP) topical gels-and tretinoin gel 0.025% (TG)--alone or, combined with EBP-were exposed to simulated solar UV irradiation to determine the degree of tretinoin photodegradation/isomerization. The investigation revealed that 94% and 84% of the initial tretinoin in the TGM formulation remained stable after 2 and 6 hours, respectively, of simulated solar UV irradiation. When combined with EBP topical gel, 89% and 81% of the initial tretinoin remained stable after 2 and 6 hours, respectively, of exposure to simulated solar UV irradiation; 86% and 80% of the tretinoin remained stable after 2 and 6 hours, respectively, when combined with CBP topical gel. In contrast, only 19% and 10% of the tretinoin remained unchanged after 2 and 6 hours, respectively, of simulated solar UV irradiation of TG. Combined with the EBP topical gel, undegraded tretinoin quantities were further reduced to 7% and 0% at 2 and 6 hours, respectively, with TG. These data suggest that the TGM formulation offers marked protection against tretinoin photodegradation compared with TG, even in the presence of a topical gel containing a potent antibiotic or a strong oxidizing agent. Although simulated solar UV irradiation is not entirely reflective of actual conditions, the results appear to be substantial.

Download full-text PDF

Source

Publication Analysis

Top Keywords

simulated solar
24
solar irradiation
24
tretinoin gel
16
topical gel
16
tretinoin
13
remained stable
12
stable hours
12
tretinoin remained
12
gel
8
gel microsphere
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!