Characterization of a mutant strain of Rhodovulum sulfidophilum lacking the pufA and pufB genes encoding the polypeptides for the light-harvesting complex 1 (B 870).

Arch Microbiol

Cátedra de Microbiología, Facultad de Agronomía, UBA and Instituto de Investigaciones Bioquímicas y Fisiológicas (IByF-CONICET), Av. San Martín 4453, 1417, Capital Federal, Argentina.

Published: June 2006

Contradictory results on the effectiveness of energy transfer from the light harvesting complex 2 (LH2) directly to the reaction center (RC) in mutant strains lacking the core light-harvesting complex 1 (LH1) have been obtained with cells of Rhodobacter capsulatus and Rhodobacter sphaeroides. A LH1(-) mutant of Rhodovulum sulfidophilum, named rsLRI, was constructed by deletion of the pufBA genes, resulting in a kanamycin resistant photosynthetically positive clone. To restore the wild type phenotype, a complemented strain C2 was constructed by inserting in trans a DNA segment containing the pufBA genes. Light-induced FTIR difference spectra indicate that the RC in the rsLRI mutant and in the C2 complemented strains are functionally and structurally identical with those in the wild type strain, demonstrating that the assembly and the function of the RC is not impaired by the LH1 deletion. The photosynthetic growth rate of the rsLRI strain increased with decreasing light intensity. At 50 W m(-2 )no photosynthetic growth was observed. These results indicate that the light energy harvested by the LH2 complex was not or inefficiently transferred to the RC; thus most of the energy necessary for photosynthetic growth is in the LH1(-) strain directly absorbed by the RC. It is supposed that in the mutant strain, RC and LH2 cannot interact in an efficient way.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-006-0108-6DOI Listing

Publication Analysis

Top Keywords

photosynthetic growth
12
mutant strain
8
rhodovulum sulfidophilum
8
light-harvesting complex
8
pufba genes
8
wild type
8
strain
6
characterization mutant
4
strain rhodovulum
4
sulfidophilum lacking
4

Similar Publications

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.

View Article and Find Full Text PDF

Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

Exploring the Role of Carbon Monoxide in Seed Physiology: Implications for Stress Tolerance and Practical Uses.

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.

View Article and Find Full Text PDF

The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!