The diagnostic terms hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are based on historical and overlapping clinical descriptions. Advances in understanding some of the causes of the syndrome now permit many patients to be classified according to etiology. The increased precision of a diagnosis based on causation is important for considering logical approaches to treatment and prognosis. It is also essential for research. We propose a classification that accommodates both a current understanding of causation (level 1) and clinical association in cases for whom cause of disease is unclear (level 2). We tested the classification in a pediatric disease registry of HUS. The revised classification is a stimulus to comprehensive investigation of all cases of HUS and TTP and is expected to increase the proportion of cases in whom a level 1 etiological diagnosis is confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ki.5001581DOI Listing

Publication Analysis

Top Keywords

hemolytic uremic
8
uremic syndrome
8
thrombotic thrombocytopenic
8
thrombocytopenic purpura
8
classification
4
classification hemolytic
4
syndrome thrombotic
4
purpura disorders
4
disorders diagnostic
4
diagnostic terms
4

Similar Publications

Case of COVID-19 infection-induced complement-mediated thrombotic microangiopathy.

Med J Armed Forces India

December 2024

Senior Advisor (Medicine) & Nephrologist, Base Hospital Delhi Cantt, New Delhi, India.

The SARS-CoV-2 virus can cause thrombotic microangiopathy (TMA) by alternate pathway activation. We present a case of a young female patient who presented with fever and dialysis-dependent acute kidney injury. On evaluation, she was diagnosed with COVID-19-induced complement-mediated thrombotic microangiopathy (CM-TMA).

View Article and Find Full Text PDF

Outcomes in patients with thrombotic microangiopathy associated with a trigger following plasma exchange: A systematic literature review.

Transfus Apher Sci

December 2024

Alexion, AstraZeneca Rare Disease, 121 Seaport Blvd, Boston, MA 02210, USA. Electronic address:

Plasma exchange (PE) outcomes in patients with trigger-associated thrombotic microangiopathy (TMA) have not been comprehensively reviewed. Embase and MEDLINE® were searched on 03/14/2022 for English language articles published after 2007, alongside a congress materials search (2019-2022; PROSPERO: CRD42022325170). Studies with patients with trigger-associated TMA (excluding thrombotic thrombocytopenic purpura, 'typical' hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli, post-partum TMA, and TMAs with known genetic cause) who received PE or plasma infusion (PI) and reported treatment response (including measures), safety, patient-/caregiver-reported outcomes, or economic burden data were examined.

View Article and Find Full Text PDF

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.

View Article and Find Full Text PDF

Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!