The nuclear shuttle protein (NSP) from bipartite geminiviruses facilitates the intracellular transport of viral DNA from the nucleus to the cytoplasm and acts in concert with the movement protein (MP) to promote the cell-to-cell spread of the viral DNA. A proline-rich extensin-like receptor protein kinase (PERK) was found to interact specifically with NSP of Cabbage leaf curl virus (CaLCuV) and of tomato-infecting geminiviruses through a yeast two-hybrid screening. The PERK-like protein, which we designated NsAK (for NSP-associated kinase), is structurally organized into a proline-rich N-terminal domain, followed by a transmembrane segment and a C-terminal serine/threonine kinase domain. The viral protein interacted stably with defective versions of the NsAK kinase domain, but not with the potentially active enzyme, in an in vitro binding assay. In vitro-translated NsAK enhanced the phosphorylation level of NSP, indicating that NSP functions as a substrate for NsAK. These results demonstrate that NsAK is an authentic serine/threonine kinase and suggest a functional link for NSP-NsAK complex formation. This interpretation was corroborated by in vivo infectivity assays showing that loss of NsAK function reduces the efficiency of CaLCuV infection and attenuates symptom development. Our data implicate NsAK as a positive contributor to geminivirus infection and suggest it may regulate NSP function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1488943PMC
http://dx.doi.org/10.1128/JVI.00173-06DOI Listing

Publication Analysis

Top Keywords

nuclear shuttle
8
shuttle protein
8
viral dna
8
serine/threonine kinase
8
kinase domain
8
nsak
7
kinase
6
protein
6
nsp
5
perk-like receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!