Leucyl-tRNA synthetase (LeuRS) performs dual essential roles in group I intron RNA splicing as well as protein synthesis within the yeast mitochondria. Deletions of the C terminus differentially impact the two functions of the enzyme in splicing and aminoacylation in vivo. Herein, we determined that a fiveamino acid C-terminal deletion of LeuRS, which does not complement a null strain, can form a ternary complex with the bI4 intron and its maturase splicing partner. However, the complex fails to stimulate splicing activity. The x-ray co-crystal structure of LeuRS showed that a C-terminal extension of about 60 amino acids forms a discrete domain, which is unique among the LeuRSs and interacts with the corner of the L-shaped tRNALeu. Interestingly, deletion of the entire yeast mitochondrial LeuRS C-terminal domain enhanced its aminoacylation and amino acid editing activities. In striking contrast, deletion of the corresponding C-terminal domain of Escherichia coli LeuRS abolished aminoacylation of tRNALeu and also amino acid editing of mischarged tRNA molecules. These results suggest that the role of the leucine-specific C-terminal domain in tRNA recognition for aminoacylation and amino acid editing has adapted differentially and with surprisingly opposite effects. We propose that the secondary role of yeast mitochondrial LeuRS in RNA splicing has impacted the functional evolution of this critical C-terminal domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M601606200 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:
Fibrinogen-related domain (FReD) containing proteins are an evolutionarily conserved immune gene family characterized by the C-terminal fibrinogen (FBG) and diverse N-terminal domains. To understand the complexity of this family in crustaceans, we performed genome screening and identified 43 full-length FReDs encoding genes in Litopenaeus vannamei. Structural classification analysis revealed these putative FReDs could be divided into six types, including two reported types (LvFReDI and II) and four new types (LvFReDIII-VI).
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia. Electronic address:
In mammals, male sexual development is initiated by the expression of the Sex-determining-Region-Y (SRY) gene. SRY contains a highly conserved High Mobility Group (HMG) box essential for DNA binding and activity. Variants in SRY cause Differences of Sex Development (DSD), accounting for 10-15% of 46,XY gonadal dysgenesis cases.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:
The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.
View Article and Find Full Text PDFBackground: The rapidly growing pipeline of target-specific Alzheimer's Disease (AD) therapeutic candidates requires accompanying tests that can identify patients likely to have a beneficial response. The growing importance of multiple pathologies in determining AD progression and treatment response underscores this need. Our work focuses on establishing analytical capability to expand detectable forms of major protein drug targets for AD: Tau, amyloid beta (Ab) and a-Synuclein (aS) proteoforms as potential personalized molecular signatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!