Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerosol flow and deposition in the model of human oropharynx was studied theoretically and experimentally for two realistic inspiratory patterns. The three-dimensional (3D) airflow structure in the sample geometry was solved with the computational fluid dynamics (CFD) code (Fluent), used to calculate dynamic distribution of particle deposition (0.3-10 mum). Experiments were done for the same flow conditions using the silicone-rubber cast with the matching geometry. Nonsteady breathing flows were reproduced with the computer-controlled artificial lung apparatus. Results of computations show that particles smaller than 3 mum easily pass the oropharynx during inspiration, while particles with a size close to 10 mum are substantially deposited, preferentially in the region of the naso-pharyngeal bend. For particles in the submicrometer size range, the spatial and temporal deposition pattern is more complicated, and strongly depends on breathing dynamics. The experiments confirmed that the mass median diameter (MMD) of the aerosol that penetrates the oropharynx and flows to the tracheobronchial tree is reduced. Measured total mass efficiency of deposition of the tested aerosol was in the range of 35-60%, depending on the breathing pattern. These findings are consistent with the CFD results. The methods and the preliminary results enable a more realistic analysis of dynamic effects during the flow of inhaled particles through the complex geometry of the oropharynx. Such analysis is needed for estimation of toxic potential of aerosols, related to their local deposition in different parts of the respiratory tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08958370600748737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!