The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2006.04.021 | DOI Listing |
Biofilm
June 2025
DTU Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.
View Article and Find Full Text PDFJ Arthropod Borne Dis
June 2024
Department of Environment Health, Ardabil University of Medical Sciences, Ardabil, Iran.
Background: Water quality is usually measured using various indicators based on physical, chemical and biological parameters. By using the biological index that is based on the identification of the arthropod families, it is possible to make a logical judgment about the ecosystem condition. The aim of this study was measuring correlation coefficients between qualitative and biological Indices.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Solid State Physics and Nonlinear Physics, Faculty of Physics and Technology, AL-Farabi Kazakh National University Almaty 050040 Kazakhstan.
In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.
View Article and Find Full Text PDFFood Res Int
February 2025
National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
Droplets impinging on sparse microgrooved polydimethylsiloxane (PDMS) surfaces with different solid fractions was experimentally investigated. First, wettability and stability of droplets on these surfaces was analyzed. The advancing and receding contact angles were found to have a large difference between in the longitudinal direction and in the transverse one, which could be attributed to the anisotropy of the micropatterned surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!