Self-organizing neural projections.

Neural Netw

Helsinki University of Technology, Neural Networks Research Centre, P.O. Box 5400, FI-02015 HUT, Finland.

Published: October 2006

The Self-Organizing Map (SOM) algorithm was developed for the creation of abstract-feature maps. It has been accepted widely as a data-mining tool, and the principle underlying it may also explain how the feature maps of the brain are formed. However, it is not correct to use this algorithm for a model of pointwise neural projections such as the somatotopic maps or the maps of the visual field, first of all, because the SOM does not transfer signal patterns: the winner-take-all function at its output only defines a singular response. Neither can the original SOM produce superimposed responses to superimposed stimulus patterns. This presentation introduces a new self-organizing system model related to the SOM that has a linear transfer function for patterns and combinations of patterns all the time. Starting from a randomly interconnected pair of neural layers, and using random mixtures of patterns for training, it creates a pointwise-ordered projection from the input layer to the output layer. If the input layer consists of feature detectors, the output layer forms a feature map of the inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2006.05.001DOI Listing

Publication Analysis

Top Keywords

neural projections
8
input layer
8
output layer
8
patterns
5
self-organizing neural
4
projections self-organizing
4
self-organizing map
4
som
4
map som
4
som algorithm
4

Similar Publications

Accurate forecasting of contagious illnesses has become increasingly important to public health policymaking, and better prediction could prevent the loss of millions of lives. To better prepare for future pandemics, it is essential to improve forecasting methods and capabilities. In this work, we propose a new infectious disease forecasting model based on physics-informed neural networks (PINNs), an emerging area of scientific machine learning.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) multiplexing is emerging as a critical technique for achieving high data capacity in underwater wireless optical communications (UWOC). Nonetheless, wavefront distortions induced by underwater turbulence compromise the orthogonality of OAM modes. In this paper, we introduce a physics-driven untrained learning approach for adaptive optics that operates independently of extensive amplitude datasets.

View Article and Find Full Text PDF

Learning model combined with data clustering and dimensionality reduction for short-term electricity load forecasting.

Sci Rep

January 2025

Department of Industrial Engineering/Graduate School of Data Science/Research Center for Electrical and Information Science, Seoul National University of Science and Technology, Seoul, South Korea.

Electric load forecasting is crucial in the planning and operating electric power companies. It has evolved from statistical methods to artificial intelligence-based techniques that use machine learning models. In this study, we investigate short-term load forecasting (STLF) for large-scale electricity usage datasets.

View Article and Find Full Text PDF

Air conditioning systems are widely used to provide thermal comfort in hot and humid regions, but they also consume a large amount of energy. Therefore, accurate and reliable load demand forecasting is essential for energy management and optimization in air conditioning systems. Within the current paper, a novel model on the basis of machine learning has been presented for dynamic optimal load demand forecasting in air conditioning systems.

View Article and Find Full Text PDF

Reliable prediction of photovoltaic power generation is key to the efficient management of energy systems in response to the inherent uncertainty of renewable energy sources. Despite advances in weather forecasting, photovoltaic power prediction accuracy remains a challenge. This study presents a novel approach that combines genetic algorithms and dynamic neural network structure refinement to optimize photovoltaic prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!