Recent computational studies on the addition of ammonia (NH3) to the Al3O3- cluster anion [A. Guevara-Garcia, A. Martinez, and J. V. Ortiz, J. Chem. Phys. 122, 214309 (2005)] have motivated experimental and additional computational studies, reported here. Al3O3- is observed to react with a single NH3 molecule to form the Al3O3NH3- ion in mass spectrometric studies. This is in contrast to similarly performed studies with water, in which the Al3O5H4- product was highly favored. However, the anion PE spectrum of the ammoniated species is very similar to that of Al3O4H2-. The adiabatic electron affinity of Al3O3NH3 is determined to be 2.35(5) eV. Based on comparison between the spectra and calculated electron affinities, it appears that NH3 adds dissociatively to Al3O3-, suggesting that the time for the Al3O3-NH3 complex to either overcome or tunnel through the barrier to proton transfer (which is higher for NH3 than for water) is short relative to the time for collisional cooling in the experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2206583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!