Centrosome amplification is a pivotal mechanism underlying tumorigenesis but its role in gliomas is underinvestigated. The present study specifically examines the expression and distribution of the centrosome-associated cytoskeletal protein gamma-tubulin in 56 primary diffuse astrocytic gliomas (grades II-IV) and in 4 human glioblastoma cell lines (U87MG, U118MG, U138MG, and T98G). Monoclonal anti-peptide antibodies recognizing epitopes in C-terminal or N-terminal domains of the gamma-tubulin molecule were used in immunohistochemical, immunofluorescence, and immunoblotting studies. In tumors in adults (n = 46), varying degrees of localization were detected in all tumor grades, but immunoreactivity was significantly increased in high-grade anaplastic astrocytomas and glioblastomas multiforme as compared to low-grade diffuse astrocytomas (p = 0.0001). A similar trend was noted in diffuse gliomas in children but the sample of cases was too small as to be statistically meaningful. Two overlapping patterns of ectopic cellular localization were identified in both primary tumors and glioblastoma cell lines: A punctate pattern, in which gamma-tubulin was partially co-distributed with pericentrin in the pericentriolar region, and a diffuse pattern, independent of pericentrin staining, denoting a soluble pool of gamma-tubulin. Cellular gamma-tubulin was detected in both soluble and insoluble (nocodazole-resistant) fractions of glioblastoma cells. Divergent localizations of gamma-tubulin and pericentrin suggest a differential distribution of these 2 centrosome-associated proteins in glioblastoma cell lines. Our results indicate that overexpression and ectopic cellular distribution of gamma-tubulin in astrocytic gliomas may be significant in the context of centrosome protein amplification and may be linked to tumor progression and anaplastic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.jnen.0000229235.20995.6e | DOI Listing |
Nat Commun
December 2024
Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.
View Article and Find Full Text PDFBrain Res Bull
December 2024
Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China. Electronic address:
Background: Glioblastoma is a highly aggressive and invasive brain tumor with an extremely poor prognosis. The aims of the present study are to investigate the pathogenesis of glioblastoma and identify potential therapeutic targets.
Methods: We performed a systematic analysis of gene expression data from multiple datasets, including GEO and TCGA, to identify hub genes and pathways associated with glioblastoma progression.
Biomaterials
December 2024
School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China. Electronic address:
The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!