It is widely accepted that shear stress activates platelets. However, this may have two linked but separate causes: a direct effect of shear stress on individual platelets, and secondary inter-platelet activation dependent on the release of agonists caused by shear. Gel-filtered platelets were exposed to intermittent low shear at 20,000 and 200,000 platelets/microl and their activation was measured with a prothrombinase-based assay. At the lower count, activation was slow and essentially linear, but at the higher count, it rose exponentially with time, leading to 3-fold more prothrombinase activity. Inclusion of apyrase and/or prostaglandin I(2) slightly reduced activation at high platelet counts, but did not abolish the nonlinear kinetics, and antibodies against von Willebrand factor had no significant effect. The contributions of anionic phospholipid and factor Va to the prothrombinase activity were assessed by measurements in the presence of exogenous factor Va. The results strongly suggest that anionic phospholipid appearance is caused directly by shear exposure, but that factor Va release from the alpha-granules is a secondary event and largely the result of platelet-platelet signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000093104DOI Listing

Publication Analysis

Top Keywords

anionic phospholipid
12
phospholipid factor
8
shear stress
8
prothrombinase activity
8
shear
6
activation
5
factor
5
extent platelet
4
platelet activation
4
activation shear
4

Similar Publications

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.

View Article and Find Full Text PDF

Boundary Lubrication with Adsorbed Anionic Surfactant Bilayers in Hard Water.

Langmuir

January 2025

R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.

The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!