The treatment of obesity in companion animals frequently focuses on restriction of energy intake. One important question with this treatment is whether dietary energy restriction (ER) produces a sustained decrease in mass-adjusted energy expenditure (EE), which prevents further weight loss and promotes rapid regain of body weight during lapses in dietary ER. This review summarizes studies that investigated the effects of dietary ER on EE at the whole-animal, organ, and cellular level. Whole-animal studies indicate that long-term dietary ER either decreases or does not affect mass-adjusted EE. The reason for this discrepancy between studies is not entirely clear, although analysis of data pooled from multiple studies suggests that a reduction in mass-adjusted EE with long-term ER would be observed if the sample size were sufficiently large and appropriate methods were used to adjust EE for body size. At the organ level, attempts were made to determine whether alterations in organ mass can entirely explain changes in EE with dietary ER. However, these studies were not conclusive, and it remains to be determined whether changes in EE exceed those that would be predicted from ER-induced alterations in organ mass. At the cellular level, there is evidence that dietary ER may induce sustained decreases in substrate oxidation, mitochondrial proton, and Na+-K+-ATPase activity in at least some tissues. These results are consistent with the idea that dietary ER may induce decreases in cellular EE. However, future studies integrating measurements at the whole-animal, organ, and cellular level will be required to determine definitively whether dietary ER produces sustained decreases in tissue or cellular EE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/136.7.1958S | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.
Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.
View Article and Find Full Text PDFTree Physiol
January 2025
Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).
View Article and Find Full Text PDFPLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFPLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!