Feeding stimulates pancreatic digestive enzyme synthesis at the translational level, and this is thought to be mediated by hormones and neurotransmitters. However, BCAAs, particularly leucine, stimulate protein synthesis in several tissues. We investigated whether BCAA stimulated the translational machinery in murine pancreas and whether their effects were independent of hormones. Rats and mice were administered (i.g. gavage) individual BCAA at 1.35 mg/g (body weight) and rat isolated pancreatic acini were incubated with BCAA under different conditions. Activation of translation initiation factors and total protein synthesis were analyzed. BCAA gavage stimulated the phosphorylation of the initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase (S6K), with leucine being the most effective. Leucine also increased the association of the initiation factors eIF4E and eIF4G, but did not affect the activity of the guanine nucleotide exchange factor eIF2B, nor total protein synthesis. BCAA acted independently of insulin signaling on isolated pancreatic acini from diabetic rats. The ability of leucine to promote phosphorylation of 4E-BP1 and S6K as well as enhance the assembly of the eIF4F complex was unimpaired in CCK-deficient mice. Finally, rapamycin (0.75 mg/kg) administered to rats 2 h before leucine gavage inhibited the phosphorylation of S6 and 4E-BP1 induced by leucine. We conclude that leucine may participate, as a signal as well as a substrate, in activating the translational machinery in pancreatic acinar cells independently of hormonal effects and that this action is through the mTOR pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/136.7.1792DOI Listing

Publication Analysis

Top Keywords

translational machinery
12
protein synthesis
12
leucine
8
rats mice
8
isolated pancreatic
8
pancreatic acini
8
initiation factors
8
total protein
8
phosphorylation 4e-bp1
8
pancreatic
5

Similar Publications

FhaA plays a key role in mycobacterial polar elongation and asymmetric growth.

mBio

January 2025

Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay.

Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.

View Article and Find Full Text PDF

Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities.

View Article and Find Full Text PDF

NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells.

Mol Plant

January 2025

Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:

The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.

View Article and Find Full Text PDF

Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C.

View Article and Find Full Text PDF

Diphthamide synthesis is linked to the eEF2-client chaperone machinery.

FEBS Lett

January 2025

Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.

The diphthamide modification of eukaryotic translation elongation factor (eEF2) is important for accurate protein synthesis. While the enzymes for diphthamide synthesis are known, coordination of eEF2 synthesis with the diphthamide modification to maintain only modified eEF2 is unknown. Physical and genetic interactions extracted from BioGRID show a connection between diphthamide synthesis enzymes and chaperones in yeast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!