Nanoscale detection of organic signatures in carbonate microbialites.

Proc Natl Acad Sci U S A

Institut de Minéralogie et de Physique des Milieux Condensés, Unité Mixte de Recherche 7590, Centre National de la Recherche Scientifique, University of Paris 6 and 7, 140 Rue de Lourmel, 75015 Paris, France.

Published: June 2006

AI Article Synopsis

Article Abstract

Microbialites are sedimentary deposits associated with microbial mat communities and are thought to be evidence of some of the oldest life on Earth. Despite extensive studies of such deposits, little is known about the role of microorganisms in their formation. In addition, unambiguous criteria proving their biogenicity have yet to be established. In this study, we characterize modern calcareous microbialites from the alkaline Lake Van, Turkey, at the nanometer scale by combining x-ray and electron microscopies. We describe a simple way to locate microorganisms entombed in calcium carbonate precipitates by probing aromatic carbon functional groups and peptide bonds. Near-edge x-ray absorption fine structure spectra at the C and N K-edges provide unique signatures for microbes. Aragonite crystals, which range in size from 30 to 100 nm, comprise the largest part of the microbialites. These crystals are surrounded by a 10-nm-thick amorphous calcium carbonate layer containing organic molecules and are embedded in an organic matrix, likely consisting of polysaccharides, which helps explain the unusual sizes and shapes of these crystals. These results provide biosignatures for these deposits and suggest that microbial organisms significantly impacted the mineralogy of Lake Van carbonates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480426PMC
http://dx.doi.org/10.1073/pnas.0603255103DOI Listing

Publication Analysis

Top Keywords

lake van
8
calcium carbonate
8
nanoscale detection
4
detection organic
4
organic signatures
4
signatures carbonate
4
microbialites
4
carbonate microbialites
4
microbialites microbialites
4
microbialites sedimentary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!