Background: Horizontal gaze palsy and progressive scoliosis (HGPPS) is caused by mutations of the ROBO3 gene, which encodes a receptor associated with axonal guidance during development. Although there is evidence for uncrossed cuneatal and corticospinal tracts in HGPPS, it is unclear whether other central nervous system pathways are involved.
Objective: To study two patients with HGPPS homozygotic for the ROBO3 E319K mutation using a variety of neurophysiological and neuropsychological tests.
Methods: A battery of neuropsychological tests was applied to assess various cognitive and perceptual functions. The corticospinal, somatosensory and auditory pathways were evaluated using appropriate neurophysiological tests. To access motor pathways to the neck muscles, electromyographic recordings were obtained from the sternocleidomastoideus and splenius capitis muscle during active head rotation.
Results: Both patients performed normally on manual dexterity, complex sensory and visuospatial functions, reading and general intelligence tests. Motor evoked potentials in both patients showed uncrossed corticospinal tracts for the extremities, although in one patient, electromyography indicated pyramidal tract crossing for the neck muscles. Although somatosensory evoked potentials showed uncrossed somatosensory fibres subserving proprioception and light touch, right median nerve somatosensory evoked potential in one patient indicated a partial lemniscal crossing. Sympathetic skin response and blink reflex showed a midline crossing of the spinothalamic and quintothalamic tracts. Brain stem auditory evoked potentials indicated a lack of crossing in the level of the trapezoid body.
Conclusions: Our patients with the ROBO3 E319Kappa mutation show normal perceptual and cognitive functions and have both crossed and uncrossed motor, sensory and auditory pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077731 | PMC |
http://dx.doi.org/10.1136/jnnp.2006.088435 | DOI Listing |
Transl Psychiatry
January 2025
Ear Institute, University College London, London, UK.
The 22q11.2 deletion is a risk factor for multiple psychiatric disorders including schizophrenia and also increases vulnerability to middle-ear problems that can cause hearing impairment. Up to 60% of deletion carriers experience hearing impairment and ~30% develop schizophrenia in adulthood.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
January 2025
The Bionics Institute, 384-388 Albert St, East Melbourne, VIC, 3002, Australia.
Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.
Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.
J Neurosci
January 2025
Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA;
The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that is required for maintaining supporting cell survival during cochlear maturation.
View Article and Find Full Text PDFBrain Stimul
January 2025
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
Background: Selective attention is a fundamental cognitive mechanism that allows people to prioritise task-relevant information while ignoring irrelevant information. Previous research has suggested key roles of parietal event-related potentials (ERPs) and alpha oscillatory responses in attention tasks. However, the informational content of these signals is less clear, and their causal effects on the coding of multiple task elements are yet unresolved.
View Article and Find Full Text PDFBrain Behav
January 2025
Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.
Introduction: The neural substrates of reasoning, a cognitive ability we use constantly in daily life, are still unclear. Reasoning can be divided into two types according to how the inference process works and the certainty of the conclusions. In deductive reasoning, certain conclusions are drawn from premises by applying the rules of logic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!