The nucleus pulposus is an aggrecan-rich hydrated tissue that permits the intervertebral disc to resist compressive loads. Adaptation to loading is achieved through an elevation in disc osmolarity mediated by the numerous charged glycosoaminoglycan side chains of the aggrecan molecule. The goal of this investigation was to determine the functional role of the osmo-regulatory protein, TonEBP, in cells of the nucleus pulposus. We found that TonEBP and its downstream target genes were robustly expressed in the tissues of the disc. Above 330 mosmol/kg, cultured nucleus pulposus cells up-regulated target genes TauT, BGT-1, and SMIT; above 450 mosmol/kg, there was raised expression of HSP-70. In hypertonic media there was activation of TauT and heat shock protein-70 (HSP-70) reporter activity and increased binding of TonEBP to the TonE motif. When cells were transfected with the dominant-negative form of TonEBP (DN-TonEBP) there was suppression of TauT and HSP-70 reporter gene expression; pTonEBP enhanced reporter gene expression. Moreover, in hypertonic media, forced expression of DN-TonEBP induced apoptosis. We suppressed TonEBP using small interfering RNA technique and noted a decrease in TauT reporter activity in isotonic as well as hyperosmolar media. Finally, we report that the aggrecan promoter contains two conserved TonE motifs. To evaluate the importance of these motifs, we overexpressed DN-TonEBP and partially silenced TonEBP using small interfering RNA. Both approaches resulted in suppression of aggrecan promoter activity. It is concluded that TonEBP permits the disc cells to adapt to the hyperosmotic milieu while autoregulating the expression of molecules that generate the unique extracellular environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M601969200 | DOI Listing |
Acta Biomater
January 2025
Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:
Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.
Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.
Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.
J Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFAnat Histol Embryol
January 2025
Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!