Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

New Phytol

Institute of Botany, Department of Integrative Biology, BOKU Vienna, Gregor Mendel Str. 33, A-1180 Vienna, Austria.

Published: August 2006

The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196831PMC
http://dx.doi.org/10.1111/j.1469-8137.2006.01736.xDOI Listing

Publication Analysis

Top Keywords

hydraulic vulnerability
16
assess hydraulic
12
acoustic emissions
8
vulnerability norway
8
norway spruce
8
hydraulic method
8
vulnerability curves
8
curves constructed
8
juvenile mature
8
mature wood
8

Similar Publications

Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance.

Plant Cell Environ

January 2025

Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.

View Article and Find Full Text PDF

Revised method for constructing acoustic vulnerability curves in trees.

Tree Physiol

January 2025

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.

During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.

View Article and Find Full Text PDF

A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.

View Article and Find Full Text PDF

Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions.

View Article and Find Full Text PDF

Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

Sci Total Environ

January 2025

Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!