Significant differences exist in the production and release of nitric oxide (NO) from human macrophages versus macrophages of mouse origin. Human macrophages have been shown to respond poorly to stimuli that provoke strong inflammatory reactions from mouse macrophages. To address the differences in macrophage function in an animal model, a transgenic mouse was created that contained the entire human NOS2 gene, including the human promoter and all of its exons and introns. The huNOS2 transgenic mouse was then mated to mice lacking a functional NOS2 gene (muNOS2(/) or NOS2 knockout mice) to generate a double transgenic mouse (huNOS2(+/0)/muNOS2(/)) that expresses a functional human NOS2 gene in place of the mouse NOS2 gene. These double transgenic mice were found to express only human NOS2 mRNA and human iNOS proteins in response to immune stimulation. The production and release of nitric oxide from isolated macrophages from the doubly transgenic mouse also more closely paralleled human responses rather than mouse. Peritoneal macrophages from double transgenic mice generated nanomolar levels of nitrite in response to inflammatory stimuli, while peritoneal macrophages from wild-type mice generated micromolar levels of nitrite in response to the same inflammatory stimuli. Similarly, microglia from the huNOS2(+/0)/muNOS2(/) mice accumulated nanomolar levels of nitrite following inflammatory stimulation. Reduced nitrite release persisted in spite of normal responsiveness to inflammatory stimulation as measured by tumor necrosis factor alpha and interleukin-6 production and release. These data suggest that the human-specific release of nanomolar levels of nitrite may largely result from differences between the human and mouse NOS2 genes, which may program different degrees of nitric oxide responses to inflammatory signals in humans than in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2006.8.893 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant potential of hydroalcoholic extracts derived from two distinct cork powders (P0 and P1), in this work, aqueous extracts were prepared and analyzed.
View Article and Find Full Text PDFBiomolecules
January 2025
Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.
Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Jiangsu Research Institute of Sports Science, Nanjing 210033, China.
Objectives: To investigate the effect of high glucose on macrophage polarization and the role of immune-responsive gene 1 (IRG1) in mediating its effect.
Methods: RAW264.7 cells were transfected with IRG1-overexpressing plasmid or IRG1 siRNA via electroporation and cultured in either normal or high glucose for 72 h to observe the changes in cell viability and morphology using CCK-8 assay and phase contrast microscopy.
Neuropsychobiology
January 2025
Introduction: Bipolar 2 disorder (BD2) is an independent disease with specific familial aggregation, significant functional impairment, specific treatment challenges and several distinctive clinical features. However, unlike bipolar 1 disorder, studies investigating causal and functional genes are lacking. This study aims to identify and prioritize causal genetic variants and genes for BD2 by analyzing brain-specific gene expression markers, to improve the understanding of its genetic underpinnings and support advancements in diagnosis, treatment and prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!