Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A solid-state 17O NMR 1H-decoupled double angle rotation (DOR) study of monosodium l-glutamate monohydrate (l-MSG) is reported. It is shown that all eight inequivalent sites can be resolved with DOR line widths ( approximately 65 Hz) approximately 120 times narrower than those in the MAS spectrum. The lines are tentatively assigned on the basis of their behavior under proton decoupling and the isotropic chemical shift and the quadrupole interaction parameter for each extracted by a combination of DOR and 3Q MAS at variable magnetic fields. With a shift range of approximately 45 ppm for these similar oxygen sites and spectral resolution under DOR comparable to that for spin-1/2 nuclei, solid-state 17O NMR should have tremendous potential in the study of biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja062031l | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!