The cationic complex [Pt(tolylterpyridine)(phenylacetylide)]+ has been used as a photosensitizer for the reduction of aqueous protons in the presence of a sacrificial electron donor to make H2. In this system, triethanolamine (TEOA) acts as the sacrificial reducing agent, methyl viologen (MV2+) serves as an electron transfer agent, and colloidal Pt stabilized by polyacrylate functions as the catalyst for H2 generation. The Pt(II) chromophore undergoes both oxidative and reductive quenching, but H2 is only seen when both TEOA and MV2+ are present. Irradiation of the reaction solution for 10 h with lambda > 410 nm leads to 85 turnovers and an overall yield of 34% based on TEOA. While H2 evolution is maximized for the system at pH 7, it is also seen at pH 5 and 9, in contrast with earlier reports using Ru(bpy)32+ as the photosensitizer. This is the first time that a Pt diimine or terpyridyl complex has been used as the photosensitizer for H2 generation from aqueous protons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0610683 | DOI Listing |
RSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CHOO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
Added electrons and holes in semiconducting (nano)materials typically occupy "trap states," which often determine their photophysical properties and chemical reactivity. However, trap states are usually ill-defined, with few insights into their stoichiometry or structure. Our laboratory previously reported that aqueous colloidal TiO nanoparticles prepared from TiCl + HO have two classes of electron trap states, termed and .
View Article and Find Full Text PDFPrecis Chem
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFTo realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!