A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. | LitMetric

Objective: To evaluate the ability of SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) version 1.0 to represent the most common problems seen at the Mayo Clinic in Rochester, Minn.

Material And Methods: We selected the 4996 most common nonduplicated text strings from the Mayo Master Sheet Index that describe patient problems associated with inpatient and outpatient episodes of care. From July 2003 through January 2004, 2 physician reviewers compared the Master Sheet Index text with the SNOMED CT terms that were automatically mapped by a vocabulary server or that they identified using a vocabulary browser and rated the "correctness" of the match. If the 2 reviewers disagreed, a third reviewer adjudicated. We evaluated the specificity, sensitivity, and positive predictive value of SNOMED CT.

Results: Of the 4996 problems in the test set, SNOMED CT correctly identified 4568 terms (true-positive results); 36 terms were true negatives, 9 terms were false positives, and 383 terms were false negatives. SNOMED CT had a sensitivity of 92.3%, a specificity of 80.0%, and a positive predictive value of 99.8%.

Conclusion: SNOMED CT, when used as a compositional terminology, can exactly represent most (92.3%) of the terms used commonly in medical problem lists. Improvements to synonymy and adding missing modifiers would lead to greater coverage of common problem statements. Health care organizations should be encouraged and provided incentives to begin adopting SNOMED CT to drive their decision-support applications.

Download full-text PDF

Source
http://dx.doi.org/10.4065/81.6.741DOI Listing

Publication Analysis

Top Keywords

snomed
9
ability snomed
8
terms
8
clinical terms
8
problem lists
8
master sheet
8
positive predictive
8
terms false
8
evaluation content
4
content coverage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!