SIL040, an introgression line (IL) developed by introgressing chromosomal segments from an accession of Oryza rufipogon into an indica cultivar Guichao 2, showed significantly less grains per panicle than the recurrent parent Guichao 2. Quantitative trait locus (QTL) analysis in F2 and F3 generations derived from the cross between SIL040 and Guichao 2 revealed that gpa7, a QTL located on the short arm of chromosome 7, was responsible of this variation. Alleles from O. rufipogon decreased grains per panicle. To fine mapping of gpa7, a high-resolution map with 1,966 F2 plants derived from the cross between SIL040 and Guichao 2 using markers flanking gpa7 was constructed, and detailed quantitative evaluation of the structure of main panicle of each of F3 families derived from recombinants screened was performed. By two-step substitution mapping, gpa7 was finally narrowed down to a 35-kb region that contains five predicted genes in cultivated rice. The fact that QTLs for five panicle traits (length of panicle, primary branches per panicle, secondary branches per panicle, grains on primary branches and grains on secondary branches) were all mapped in the same interval as that for gpa7 suggested that this locus was associated with panicle structure, showing pleiotropic effects. The characterizing of panicle structure of IL SIL040 further revealed that, during the domestication from common wild allele to cultivated rice one at gpa7, not only the number of branches and grains per panicle increased significantly, more importantly, but also the ratio of secondary branches per panicle to total branches per panicle and the ratio of grains on secondary branches per panicle to total grains per panicle increased significantly. All these results reinforced the idea that gpa7 might play an important role in the regulation of grain number per panicle and the ratio of secondary branches per panicle during the domestication of rice panicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-006-0326-y | DOI Listing |
Plants (Basel)
January 2025
Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.
View Article and Find Full Text PDFPlant Sci
January 2025
Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan, 252100, China.
J Genet Genomics
December 2024
State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!