Methionine aminopeptidase (MetAP) removes the amino-terminal methionine residue from newly synthesized proteins, and it is a target for the development of antibacterial and anticancer agents. Available x-ray structures of MetAP, as well as other metalloaminopeptidases, show an active site containing two adjacent divalent metal ions bridged by a water molecule or hydroxide ion. The predominance of dimetalated structures leads naturally to proposed mechanisms of catalysis involving both metal ions. However, kinetic studies indicate that in many cases, only a single metal ion is required for full activity. By limiting the amount of metal ion present during crystal growth, we have now obtained a crystal structure for a complex of Escherichia coli MetAP with norleucine phosphonate, a transition-state analog, and only a single Mn(II) ion bound at the active site in the position designated M1, and three related structures of the same complex that show the transition from the mono-Mn(II) form to the di-Mn(II) form. An unliganded structure was also solved. In view of the full kinetic competence of the monometalated MetAP, the much weaker binding constant for occupancy of the M2 site compared with the M1 site, and the newly determined structures, we propose a revised mechanism of peptide bond hydrolysis by E. coli MetAP. We also suggest that the crystallization of dimetalated forms of metallohydrolases may, in some cases, be a misleading experimental artifact, and caution must be taken when structures are generated to aid in elucidation of reaction mechanisms or to support structure-aided drug design efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480431 | PMC |
http://dx.doi.org/10.1073/pnas.0602433103 | DOI Listing |
Biomolecules
December 2024
Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.
Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Int J Mol Sci
November 2024
Biodiversity and Biotechnology Bionorte Network, Federal University of Para, Belém 66075-110, PA, Brazil.
Naphthoquinones eleutherin and isoeleutherin have demonstrated promising antibacterial activity, probably due to their quinone structure, which can generate reactive oxygen species. The study examines the activities of pathogens, such as and , associated with antimicrobial resistance and explores their potential mechanisms of action. The MIC, IC, and MBC were determined.
View Article and Find Full Text PDFBioorg Chem
November 2024
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India. Electronic address:
Recent years have witnessed notable breakthroughs in the field of biotherapeutics. Proteolysis Targeting Chimeras (PROTACs) are novel molecules which used to degrade particular proteins despite the blockage by small drug molecules, which leads to a predicted therapeutic activity. This is a unique finding, especially at the cellular level targets degradations.
View Article and Find Full Text PDFSci Rep
November 2024
Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
Nosemosis is one of the most devastating diseases of Apis mellifera (Honey bees) caused by the single-celled spore-forming fungi Nosema apis, N. ceranae and N. neumanii, causing a severe loss on the colony vitality and productivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!